

Finite Automata
Part Two

Outline for Today
● Recap from Last Time

● Where are we, again?
● Designing a DFA

● How to think about finite memory.
● Regular Languages

● A fundamental class of languages.
● NFAs

● Automata with Magic Superpowers.
● Designing NFAs

● Harnessing an awesome power.

Recap from Last Time

Formal Language Theory
● An alphabet is a set, usually denoted Σ,

consisting of elements called characters.
● a ∈ Σ means “a is a single character.”

● A string over Σ is a finite sequence of zero or
more characters taken from Σ.

● The empty string has no characters and is
denoted ε.

● A language over Σ is a set of strings over Σ.
● The language Σ* is the set of all strings over Σ.

● w ∈ Σ* means “w is a string of characters from Σ.”

The Language of an Automaton
● If A is an automaton that processes

strings over Σ, the language of A,
denoted (ℒ A), is the set of all strings A
accepts.

● Formally:
ℒ(A) = { w ∈ Σ* | A accepts w }

DFAs
● A DFA is a

● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton
that we will see in this course.

DFAs
● A DFA is defined relative to some

alphabet Σ.
● For each state in the DFA, there must be

exactly one transition defined for each
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

New Stuff!

Recognizing Languages with DFAs
L = { w ∈ {a, b}* | w contains aa as a substring }

q0
start q1 q2

a

a

b

b

 Σ

Tabular DFAs

Tabular DFAs

start q0q0

1

q1 q2 q3
0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

These stars
indicate accepting

states.

q3

Tabular DFAs

start q0q0

1

q1 q2 q3
0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

Since this is the
first row, it's the

start state.

q3

Tabular DFAs

start q0q0

1

q1 q2 q3
0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

Why isn’t there a column
here for Σ?

Answer at
https://cs103.stanford.edu/pollev

q3

https://cs103.stanford.edu/pollev

My Turn to Code Things Up!
int kTransitionTable[kNumStates][kNumSymbols] = {
 {0, 0, 1, 3, 7, 1, …},
 …
};
bool kAcceptTable[kNumStates] = {
 false,
 true,
 true,
 …
};
bool doesAccept(string input) {
 int state = 0;
 for (char ch: input) {
 state = kTransitionTable[state][ch];
 }
 return kAcceptTable[state];
}

The Regular Languages

A language L is called a regular language
if there exists a DFA D such that (ℒ D) = L.

If L is a language and (ℒ D) = L, we say
that D recognizes the language L.

The Complement of a Language
● Given a language L ⊆ Σ*, the complement

of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:
L = Σ* - L

L L

Σ*

Good proofwriting
exercise: prove L̿ = L
for any language L.

Complementing Regular Languages

L = { w ∈ {a, b}* | w contains aa as a substring }

q0
start q1 q2

a a

b

b

 Σ

L = { w ∈ {a, b}* | w does not contain aa as a substring }

q0
start q1 q2

a a

b

b

 Σ

Complementing Regular Languages

L = { w ∈ {a, *, /}* | w represents a C-style comment }

q1
start q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

Complementing Regular Languages

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
 comment }

q1
start q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

q5

q3q2q1q0

Closure Properties
● Theorem: If L is a regular language, then L is

also a regular language.
● As a result, we say that the regular languages

are closed under complementation.

All languages

Regular languages

L

L

Question to ponder:
are the nonregular

languages closed under
complementation?

NFAs

The Motivation

q0 q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

NFAs
● An NFA is a

● Nondeterministic
● Finite
● Automaton

● Structurally similar to a DFA, but
represents a fundamental shift in how
we'll think about computation.

(Non)determinism
● A model of computation is deterministic if at every

point in the computation, there is exactly one choice
that can make.
● The machine accepts if that series of choices leads to an

accepting state.
● A model of computation is nondeterministic if the

computing machine has a finite number of choices
available to make at each point, possibly including zero.

● The machine accepts if any series of choices leads to an
accepting state.
● (This sort of nondeterminism is technically called existential

nondeterminism, the most philosophical-sounding term
we’ll introduce all quarter.)

q0q0 q1 q2q2

A More Complex NFA

q1 q2
start 1

1

q2

 0, 1

If a NFA needs to make a
transition when no transition

exists, the automaton dies and
that particular path does not

accept.

Hello, NFA!

q2q2q2q2q1q1q0q0
start h i

h i

q2q2q1q1q0q0 q2q2

Hello, NFA!

start h i

h i

q2q2q2q2

Tragedy in Paradise

q1q1q0q0
start h i

h i p

q2q2q1q1q0q0

Tragedy in Paradise

start h i

h i p

(I)

q2q2q1q1q0q0
start a b

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

What is the language of each NFA? (Assume Σ = {a, b}.)
Answer at https://cs103.stanford.edu/pollev

(II)

q1q1q0q0 q2q2q2
start a a q2

 a, b

(III)

q0
start

(IV)

q0q0
start

(V)

q0q0
start

 Σ

{ab}

{ w ∈ Σ* | w ends in aa }

Ø {ε} Σ*

Question to ponder:
Why is the answer

{ w ∈ Σ* | w ends in aaa }
not correct?

https://cs103.stanford.edu/pollev

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

Not at all fun or
rewarding exercise:

what is the language of
this NFA?

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.
● NFAs are not required to follow ε-transitions.

It's simply another option at the machine's
disposal.

NFAs
● An NFA is defined relative to some

alphabet Σ.
● For each state in the NFA, there may be

any number of transitions defined for
each symbol in Σ, plus any number of
ε-transitions.
● This is the “nondeterministic” part of NFA.

● There is a unique start state.
● There are zero or more accepting states.

DFAs
● A DFA is defined relative to some

alphabet Σ.
● For each state in the DFA, there must be

exactly one transition defined for each
symbol in Σ. Additionally, ε-transitions
are not allowed.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

Intuiting Nondeterminism
● Nondeterministic machines are a serious

departure from physical computers. How
can we build up an intuition for them?

● There are two particularly useful
frameworks for interpreting
nondeterminism:
● Perfect positive guessing
● Massive parallelism

Perfect Positive Guessing
● We can view nondeterministic machines as

having Magic Superpowers that enable them
to guess choices that lead to an accepting state.
● If there is at least one choice that leads to an

accepting state, the machine will guess it.
● If there are no choices, the machine guesses any one

of the wrong guesses.
● There is no known way to physically model this

intuition of nondeterminism – this is quite a
departure from reality!

Massive Parallelism
● An NFA can be thought of as a DFA that can be in many

states at once.
● At each point in time, when the NFA needs to follow a

transition, it tries all the options at the same time.
● (Here's a rigorous explanation about how this works; read

this on your own time).
● Start off in the set of all states formed by taking the start state

and including each state that can be reached by zero or more
ε-transitions.

● When you read a symbol a in a set of states S:
– Form the set S’ of states that can be reached by following a single a

transition from some state in S.
– Your new set of states is the set of states in S’, plus the states reachable

from S’ by following zero or more ε-transitions.

Designing NFAs

Designing NFAs
● Embrace the nondeterminism!
● Good model: Guess-and-check:

● Is there some information that you'd really like to
have? Have the machine nondeterministically guess
that information.

● Then, have the machine deterministically check that
the choice was correct.

● The guess phase corresponds to trying lots of
different options.

● The check phase corresponds to filtering out
bad guesses or wrong options.

Guess-and-Check
L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ

Nondeterministically guess when the
end of the string is coming up.

Deterministically check whether you
were correct.

Guess-and-Check
L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, b

a, c

b, c

start

ε

ε

ε

Nondeterministically
guess which character

is missing.

Deterministically check
whether that

character is indeed
missing.

Just how powerful are NFAs?

Next Time
● The Subset Construction

● So beautiful. So elegant. So cool!
● Closure Properties of Regular

Languages
● Transforming languages by transforming

machines.
● The Kleene Closure

● What’s the deal with the notation Σ*?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

